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Abstract

The aim of this paper is to address the problem of suppressing unstable dynamics occurring in rectangular natural

circulation loops on the base of a reliable model-based controller.

The first part of the study is devoted to define a high order model, through the reduction by truncation of the

Fourier series expansion of the functions describing the loop geometry of Navier–Stokes infinite-dimensional partial

differential equations describing the flow, the heating conditions and the temperature distribution of the fluid. The first

three modes were considered so that a closed model of seven ordinary differential equations was obtained. The model

was then integrated and simulations compared with experimental data, confirming its ability to address the description

of the dynamical behaviour of rectangular natural circulation loops.

The satisfactory performances of the model lead to use it for the design and experimental testing of model-based

feedback control strategies. In particular, a traditional proportional-derivative control approach has been applied to the

model linearised around its equilibrium points. The flow velocity or an opportunely selected temperature difference

between given points of the loop were chosen as feedback variables. Accordingly, the target of the control action was to

drive the feedback variable to its stationary value, computed by means of the mathematical model. Experimental

validation of the proposed model-based strategies satisfactorily demonstrated the capability of the approach in sta-

bilising the system dynamics.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Natural convection may often represent the domi-

nant mechanism for the transfer of energy from a source

to a sink, opportunely positioned with respect to one

another, by means of the motion of a fluid, due to the

buoyancy determined by the temperature difference be-

tween the source and the sink. Its study is eminently

complex, especially in those cases characterised by high

heat transfer rate, which lead to turbulent motion.

Closed loop thermosyphons, also called natural circu-

lation loops, are technical devices specifically designed in

order to make use of this mechanism for the heat re-

moval from a source, placed at bottom, to a heat sink

placed at the topmost section of the loop.

As no pumps are needed, not only the cost of

pumping are eliminated but also the heat removal from

the heat source is intrinsically more safe. This is the

main reason for preferring natural to forced convection

in energy plants for which safety is a stringent require-

ment, as nuclear power plants and electrical machine

rotor cooling [1–3], or where considerable costs reduc-

tion may be obtained, as geothermal plants and solar

heaters, which are characterised by low temperature

thermal source and higher circulating flow rate [4,5].

Finally, natural convection may represent one of the

possible technical solution in those systems in which the

pumping system cannot be conveniently positioned,

such as cooling systems for internal combustion engines,

turbine blade cooling or computer cooling [6,7].

Recent scientific efforts have been concentrated on

two kind of geometrical configurations: the rectangular

[1,8] and the toroidal [9–12]. In both cases the simplest

conditions are those in which the loop lies on a vertical

plane, is symmetrical with respect to the vertical axis and

is made up of a bottom-placed heat source and a heat
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sink on the top. The heat source and the heat sink may

be connected or not by adiabatic legs. In particular,

toroidal loops reported in literature usually lack of

adiabatic legs and are consist of two semicircular heat

exchanging sections directly connected, whereas rectan-

gular loops, which are the main object of the present

study and are schematised in Fig. 1, usually have ther-

mally isolated vertical legs connecting the heat ex-

changing sections [8]. Due to the relevance of their

applications, natural circulation loops stability repre-

sents a stringent requirement. In fact, the oscillations of

the fluid velocity and temperature associated to unstable

dynamics are able to compromise the heat removal from

the heat source and are, therefore, extremely dangerous

for the plant safety. The system dynamics strongly de-

pends both on the geometry and on the heating condi-

tions at the boundary. It is just mentioned here that the

most common heating conditions considered in litera-

ture are symmetrical and consist of: imposed wall tem-

perature [9,11]; imposed heat flux [12–14] or mixed

condition [10,15,16].

Accurate modelling of the system dynamics is nec-

essary, so that it is possible to address the problem of its

control. The geometry of the system and the heating

conditions at the boundary play a fundamental role in

the possibility of modelling natural circulation loops

dynamics. In particular, the governing equations de-

scribing the flow inside the loop, supposed one-dimen-

sional, have been exactly reduced to a three-dimensional

dynamical model only for the case of toroidal geometry

either with known wall temperature or with known heat

flux. These models may display a chaotic dynamical

behaviour, mainly resembling that of the Lorenz system

[17]. Conversely, due to the higher complexity such

simple models have not been proposed for the cases of

mixed conditions or for other geometries. They lack, in

particular, for the rectangular geometry with adiabatic

legs as the one reported in Fig. 1, which better approx-

imates, in general, the configuration of the most com-

mon real applications.

The occurrence of non-periodic thermal oscillations

and flow reversals in natural circulation loops represents

the main problem affecting real world applications of

this kind of systems. They are associated both to high

local temperature and to transient stops of the fluid

motion. The first phenomenon can lead to the formation

of vapour bubbles able to create localised blocks to the

flow, especially in those geometries characterised by

small curvature bends. The second phenomenon is

similar in its effects, as it leads to the momentary arrest

of the heat removal from the thermal source that, de-

pending on the application, can even represent a cata-

strophic event [1,2].

It is clear the opportunity to control the dynamics

of natural circulation loops, aiming not only to enlarge

their range of stable operations but also to guarantee

reliable heat removal even during off-design transitory.

In the last ten years, starting from [9,10,18], several

studies have demonstrated that one of the most attrac-

tive ways to control chaotic convective flow relies on an

active feedback control strategy. Several applications

based on this strategy have been proposed for the case of

toroidal circulation loops and their ability in suppressing

chaos has been demonstrated both in theory and in

practice [19], considering either linear [18,19] or

non-linear feedback [19,20]. In all reported cases, the

feedback variables taken under consideration were non-

dimensional temperature differences measured either at

the horizontal or at the vertical diameter of the torus.

These corresponded, together with the non-dimensional

velocity, to the state variables of the ODE model ap-

proximating the system dynamics to the first mode.

Parenthetically, the flow velocity has never been con-

sidered as feedback variable, nor it has been ever ex-

perimentally measured for control purposes.

The aims of the present study are to address the

modelling of rectangular natural circulation loops and

to design and testing a reliable control strategy to sup-

press undesired unstable dynamics. Model definition

was performed by adopting the mathematical approach

for generic loop geometry proposed by Rodriguez Ber-

nal and Van Vleck [21], in order to obtain a system

analogous to that describing the toroidal geometry. In

particular, the model must be capable to coherently re-

produce both the stationary and the chaotic flow re-

gimes governing the system dynamics for different

conditions tested on an experimental loop.

Once that the model validity was confirmed by ex-

periments, the next step consisted in analysing, both

theoretically and experimentally, the possibility to design

model-based feedback control strategies, considering as

feedback variables alternatively the flow velocity and the

inlet–outlet temperature difference at the heating section.

While the second can be considered to correspond to the

horizontal temperature difference adopted in the con-

trol of toroidal loops, the flow velocity has never been
Fig. 1. Schematic of the experimental rectangular circulation

loop.

2426 A. Fichera, A. Pagano / International Journal of Heat and Mass Transfer 46 (2003) 2425–2444



considered in simple feedback control strategies and,

in general, has been considered only in the theoretical

design of an optimal controller [8], which has then

been experimentally tested using only temperature

differences.

The design of the controller was performed in three

main steps. The concern of the first was on briefly

analysing the model linearised around its equilibrium

points, in order to choose the correct inputs and outputs

to be considered for control purposes and to assess the

observability and controllability properties. The other

two steps performed, respectively theoretically and ex-

perimentally, the design of traditional control strategies.

In particular, the analysis was limited to the propor-

tional and proportional-derivative control.

2. Experimental apparatus

A schematic of the experimental natural circulation

loop is depicted in Fig. 1 and its main dimensions are

reported in Table 1. It consists of two copper horizontal

tubes (heat transfer sections), two vertical phirex tubes,

four horizontal phirex tubes and four 90� phirex bends.

The lower heating section consists of two independent

electrical heating wire, able to provide 0.5 kW each,

winding on the outside of the copper tube.

The upper heat extraction system is a coaxial heat

exchanger with tap water flowing in the annulus created

by an external iron case (diameter 0.2 m). An expansion

tank open to the atmosphere is installed on the topmost

elevation of the loop allowing the fluid volumetric

expansion.

The whole system is equipped with six calibrated

(precision �0.1 K) T-thermocouples (diameter 0.5 mm)

located (refer to Fig. 1): T2 and T4 on the left vertical

tube, T5 and T6 on the right vertical tube and T1 and T3

on the lower horizontal tubes. Moreover, a magnetic

flow meter model MAG MASTER––ABB, which does

not interfere with the flow, is placed in the middle of one

of the vertical legs and measures the mass flow rate cir-

culating in the loop (error on the velocity �0.00075 m/s).

Hence, the result of each experimental test consists of

seven time series describing the dynamical behaviour of

the temperatures measured along the loop and of the

mass flow rate. The temperatures are indicated in the

following with the same name of the thermocouples

they are measured with.

The thermocouples and the flow meter are connected

to a National Instruments board, model 6052E, con-

nected to a SCXI 1102. During each test and for each

measurement, the acquisition board stores 5 data per

second in a buffer and then records the mean value of

these 5 data; this in practice results in a sampling period

of 1 s that allows the suppression of high frequency noise

components.

3. Mathematical model

This section addresses the mathematical modelling of

the dynamical behaviour of the rectangular natural cir-

culation loop schematised in Fig. 1. The system is

characterised by having generic height and width, indi-

cated respectively with L and L1, and constant tubes

inner diameter, r. In the following, x represents an ab-

scissa parallel to the loop pipes with positive direction

corresponding to the clockwise path on the loop and

arbitrarily chosen origin in the left down corner of the

loop. Writing the equation of mass conservation, in the

hypotheses of uncompressible fluid and of one-dimen-

sional motion, implies that the cross-section averaged

flow velocity is the same at all points along the loop and

hence x ¼ xðtÞ, which ensures that the velocity field

does not depend on the abscissa x.
The balance of the forces acting on the elementary

piece of tube of length dx yields:

qpr2 � dx � dxðtÞ
dt

¼ �pr2 � dx � dp
dx

� qg � pr2 � dx � dz
dt

� sw � 2pr � dx ð1Þ

Under Boussinesq assumption, it is possible to ne-

glect the variation of density with temperature every-

where except that in the buoyancy term, where a linear

dependence on temperature can be assumed. Let T0, T ,
q0 ¼ qðT0Þ and b denote respectively the reference tem-

perature, the fluid temperature at the generic abscissa,

the reference density and the volumetric expansion co-

efficient (supposed constant for simplicity). Hence,

Boussinesq�s hypothesis reads q ¼ q0½1� bðT � T0Þ�;
substituting in (1), dividing for pr2 dx and integrating

over the whole length of the loop leads to

q0

dxðtÞ
dt

¼ q0gb
2 Lþ L1ð Þ

I
Tð � T0Þf ðxÞdx�

2sw
r

ð2Þ

In the previous equations the function f ðxÞ is used to

describe the loop geometry through the variation in

height of the abscissa x, i.e. f ðxÞ ¼ dz=dx. Referring to

Fig. 1, f ðxÞ is a piecewise function that assumes the

following discrete values (refer to Fig. 2(a)):

Table 1

Main dimensions of the experimental loop

Loop main dimensions [mm]

Loop height 680

Loop width 1450

Tube inner diameter 26

Heating section length 930

Cooling section length 1000

Total loop length 5260

A. Fichera, A. Pagano / International Journal of Heat and Mass Transfer 46 (2003) 2425–2444 2427



f ðxÞ ¼

1 0 < x < L
0 L < x < Lþ L1

�1 Lþ L1 < x < 2Lþ L1

0 2Lþ L1 < x < 2ðLþ L1Þ

8>><
>>: ð3Þ

which for a closed loop implies
H
f ðxÞ ¼ 0.

In accordance with [14] and [16], the term sw can be

expressed as

sw ¼ 1

2
q0f


x2 ð4Þ

where

f 
 ¼ b
Red

Re ¼ q0v2r
l

¼ x2r
m

ð5Þ

where l and m denote the dynamic and cinematic vis-

cosity respectively, which have been considered constant

and independent on temperature. The validity of this

assumption might be limited by the existence of high

temperature oscillations; nonetheless, further complica-

tion of the model is out of the scope of this study.

Substituting (5) in (4)

sw ¼ 1

2
q0b

m
2r

� �d
x2�d ð6Þ

The momentum equation is therefore

dxðtÞ
dt

þ 1

r
b

m
2r

� �d
x2�d ¼ gb

2ðLþ L1Þ

I
ðT � T0Þf ðxÞdx

ð7Þ

In order to assess of the energy balance equation it is

necessary to choose the thermal conditions at the loop

walls. In particular, the vertical legs, for 0 < x < L and

Lþ L1 < x < 2Lþ L1, are supposed adiabatic; in the

horizontal bottom section, of length L1, it has been as-

sumed a constant heat flux q, uniformly distributed per

unit length; at the horizontal top section, i.e. at the heat

exchanger of length L1, the fluid circulating inside the

loop is cooled by the fluid circulating in the outer cyl-

inder of the heat exchanger.

A strong assumption has been considered in the fol-

lowing, in order to allow an exact closed form reduction

of the mathematical model. In particular, as no exact

reduction is possible if mixed heating conditions are

considered and as it has been assumed a uniformly dis-

tributed heating flux at the bottom section, an analogous

and opposite cooling flux has been assumed at the top-

most horizontal section. In practice, under this hy-

pothesis if DT is the inlet–outlet temperature difference

of the external cooling flow rate, the heat extracted in an

elementary area is _mmcpDT=2prL1, with _mm and cp the mass

flow rate and specific heat of the cooling fluid. Notice

that, the last condition is hardly feasible in real appli-

cations as it requires an uniform heat extraction over the

length of the tube; hence, a posteriori comparisons of

experimental results and model simulations ought to

confirm the validity of the model. Parenthetically, sim-

ilar mismatches between the boundary conditions cho-

sen for the model and allowing simple closed reduction

and those used during experiments to test the model

itself have been considered in analogous cases by many

authors [9,10,22,23]. With the aforementioned heating

boundary conditions, the energy balance of the control

volume of length dx, can be expressed as

oT
ot

þ xðtÞ oT
ox

¼ hðxÞ þ a
o2T
ox2

ð8Þ

where for simplicity, the boundary conditions have been

expressed in compact form through the piecewise func-

tion hðxÞ (see Fig. 2 (b)):

hðxÞ ¼

0 0 < x < L
� 2

q0cr
� _mmcpDt
2prL1

L < x < Lþ L1

0 Lþ L1 < x < 2Lþ L1
2

q0cr
� q 2Lþ L1 < x < 2ðLþ L1Þ

8>><
>>: ð9Þ

Summarising, the mass, momentum and energy bal-

ance equations, with geometry, boundary conditions

and shear stress coefficient expressed by the functions

f ðxÞ, hðxÞ and sw respectively, constitute the mathe-

matical model of the generic natural circulation loop,

which reads

Fig. 2. Piecewise linear functions describing: (a) the loop geometry, (b) the heating boundary conditions.
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dxðtÞ
dt

þ 1

r
b

m
2r

� �d
x2�d ¼ gb

2ðLþ L1Þ

I
ðT � T0Þf ðxÞdx;

xð0Þ ¼ x0 ð10Þ

oT
ot

þ xðtÞ oT
ox

¼ hðxÞ þ a
o2T
ox2

; T ðx; 0Þ ¼ T0ðxÞ ð11Þ

It is possible to see that the model is formed by a one-

dimensional ordinary differential equation and an infi-

nite-dimensional partial differential equation. In order

to obtain a finite order model, which can therefore be

applied for the study of the system dynamics or for its

simulation, it is necessary to find a way to reduce the

infinite-dimensional model (10) and (11) to a finite-

dimensional one.

3.1. Model reduction

Rodriguez-Bernal and Van Vleck [21] described the

way to reduce a model formally identical to (10) and

(11), by means of the following Fourier series expansion

of the known functions f ðxÞ and hðxÞ and of the variable

T ðx; tÞ:

T ðx; tÞ � T0 ¼
X
k2Z


akðtÞ � ei
2p

2ðLþL1Þ
kx ð12Þ

hðxÞ ¼
X
k2K

bk � ei
2p

2ðLþL1 Þ
kx ð13Þ

f ðxÞ ¼
X
k2J

ck � ei
2p

2ðLþL1 Þ
kx ð14Þ

where K, J � Z
 ¼ Z n f0g. The substitution of (12)–(14)

in (10) and (11) leads to the following infinite system

of ordinary differential equations:

dxðtÞ
dt

þ 1

r
b

m
2r

� �d
x2�d ¼ gb

X
k2K\J

akðtÞ � �cck ð15Þ

dakðtÞ
dt

þ p
ðLþ L1Þ

ikxðtÞ
"

þ a
p2

ðLþ L1Þ2
k2
#
� akðtÞ ¼ bk

with k � K \ J ð16Þ

in which �aakðtÞ ¼ a�kðtÞ; �bbk ¼ b�k ; �cck ¼ c�k .

In the case of rectangular loops herein considered,

the coefficients ck of the Fourier expansion of f ðxÞ result
from the following equation:

ck ¼
1

2ðLþ L1Þ

I
f ðxÞ � e�i 2p

2ðLþL1Þ
kx
dx ð17Þ

Substituting for simplicity the following expressions

and considering (7):

# ¼ px
Lþ L1

c ¼ pL
Lþ L1

ð18Þ

the coefficients ck for the rectangular geometry become

ck ¼
1

2pki
ð1½ � cos kc þ isinkcÞð1� cos kpÞ� ð19Þ

that vanish for even k.
Acting analogously for the calculation of the coef-

ficient bk of the expansion of hðxÞ, considering (9),

yields

bk ¼
1

2ðLþ L1Þ

I
hðxÞ � e�i 2p

2ðLþL1Þ
kx
dx ð20Þ

Substituting again (18) and the following:

C ¼ 2

q0cr
_mmcpDT
2prL1

 
þ q

!
C1 ¼

2

q0cr
_mmcpDT
2prL1

 
� q

!

ð21Þ

the coefficient bk read

bk ¼
C

2pki
ð � 1� cos kc þ isinkcÞ for odd k ð22Þ

bk ¼
C1

2pki
1ð � cos kc þ isinkcÞ for even k ð23Þ

The ak of the expansion of T ðx; tÞ are complex and can

be expressed as

akðtÞ ¼ akðtÞ þ ibkðtÞ ð24Þ

In order to obtain a finite model it is necessary to

approximate the Fourier series expansion to a finite

number of modes. In the present study the first three

modes (k ¼ 3) have been considered sufficient, according

to the following considerations:

• the first mode of the series expansions of f ðxÞ and

hðxÞ is sinusoidal; therefore, it is unable to approxi-

mate the original square wave-shapes functions;

• the second mode of the series expansion of f ðxÞ
according to Eq. (19) is null and therefore does not

contribute to the regime dynamical behaviour;

• numerical simulations have shown that the dynami-

cal contribute of the third mode, though much smal-

ler than the first and more strongly damped, is still

relevant to reach an adequate approximation of the

system dynamics;

• simulations of the fifth mode have shown that its

contribution is negligible; moreover frequencies asso-

ciated to this mode (and to the higher order modes)

can be considered out of the range of frequencies that

is interesting to model in practice.

Application of the method of residuals to Eqs. (15)

and (16), in order to separate the terms of the same

order, substitution of ai, bi, and ci and separation of real

and imaginary parts, leads to yields:
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_xxðtÞ ¼ � 1

r
b

m
2r

� �d
x2�d þ 2gb

p
a1ðtÞ sin c

�

� b1ðtÞð1� cos cÞ þ a3ðtÞ
1

3
sin 3c

� b3ðtÞ
1

3
ð1� cos 3cÞ

�
ð25Þ

_aa1ðtÞ ¼ �a
p2

ðLþ L1Þ2
a1ðtÞ þ

p
Lþ L1

xðtÞb1ðtÞ þ
C
2p

sin c

ð26Þ

_bb1ðtÞ¼�a
p2

ðLþL1Þ2
b1ðtÞ�

p
LþL1

xðtÞa1ðtÞþ
C
2p

ð1þ coscÞ

ð27Þ

_aa2ðtÞ ¼ �a
4p2

ðLþ L1Þ2
a2ðtÞ þ

2p
Lþ L1

xðtÞb2ðtÞ þ
C1

4p
sin 2c

ð28Þ

_bb2ðtÞ¼�a
4p2

ðLþL1Þ2
b2ðtÞ�

2p
LþL1

xðtÞa2ðtÞ�
C1

4p
ð1�cos2cÞ

ð29Þ

_aa3ðtÞ ¼ �a
9p2

ðLþ L1Þ2
a3ðtÞ þ

3p
Lþ L1

xðtÞb3ðtÞ þ
C
6p

sin 3c

ð30Þ

_bb3ðtÞ¼�a
9p2

ðLþL1Þ2
b3ðtÞ�

3p
LþL1

xðtÞa3ðtÞþ
C
6p

ð1þcos3cÞ

ð31Þ

One main consideration must be drawn at this point.

Considering the system dynamics at regime, it is neces-

sary that the global heat power supplied to the fluid in

the heat source is then extracted in the heat sink, in

order to have a non-diverging thermal field. This leads

to consider for the regime condition:I
hðxÞ ¼ 0 ð32Þ

which together with (9) and (21) implies that q ¼
�ð _mmcpDt=2prL1Þ and C1 ¼ 0.

It is important to notice that, the last observation

leads to the non-controllability of the second mode,

expressed by Eqs. (28) and (29), which is, on the other

hand, stable and rapidly decaying. Anyhow, system

(25)–(31) represents the mathematical model, approxi-

mated to the third order, of the dynamics of rectangular

natural circulation loops.

Once that the model has been simulated it is neces-

sary to rebuild the temperature dynamics T ðx; tÞ from

the simulated variables akðtÞ and bkðtÞ, i.e. real and

imaginary part of the expansion coefficients of T ðx; tÞ.
This is easily performed according to (12), arresting the

sum at the third mode:

T ðx; tÞ � T0 ¼ 2a1ðtÞ cos
p

Lþ L1

x� 2b1ðtÞ sin
p

Lþ L1

x

þ 2a2ðtÞ cos
p

Lþ L1

2x� 2b2ðtÞ sin
p

Lþ L1

2x

þ 2a3ðtÞ cos
p

Lþ L1

3x� 2b3ðtÞ sin
p

Lþ L1

3x

ð33Þ

3.2. Model validation

In order to validate the model it is necessary to

compare its simulation with the measurements detected

on the experimental loop described in the second sec-

tion. The parameters that have been adopted during the

simulations are reported in Table 2.

They correspond to the fluid properties at the refer-

ence temperature T0 ¼ 55 �C and can be considered

constant. The other parameters, a, b and d, are strongly
dependent on the fluid motion which occurs during the

various operating condition. Those used in this study are

reported in Table 3.

Some explanations are needed to justify previous

choices. The experimental determination of parameters

a, b and d is quite uncertain and this cause the existence

of strong differences between the values reported by

various authors, as described in [16]. For this reason, the

values that we have reported represent just an attempt to

fit simulated with experimental data. Some physical

reasoning of the relevant changes existing for different

power level can nonetheless be given:

• For heat power below 900 W, the flow it stationary

and therefore it has a constant non-zero flow veloc-

ity. The value of the thermal diffusivity that has been

found derives mainly from the turbulent component

due to the constant stationary velocity.

• For heat power between 900 and 1600 W, the flow is

not stationary but chaotic. The kind of chaotic mo-

tion that the experimental system manifests is the so

called one-side chaos (see the left column of Fig. 5),

Table 2

Fluid properties

b 5.040� 10�4 K�1

q 985.73 kgm�3

cp 4.183 kJ kg�1 K�1

m 0.5� 10�6 m2 s�1

Table 3

Dissipative terms

Power a [m2 s�1] b [1] d [1]

<900 W 0.004 2 0.5

900–1600 W 0.0002 36 0.9

>1600 W 0.0002 2 0.5
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described in [24]. This means that the flow velocity os-

cillates mainly in the positive half-plane, from values

around zero (with very weak and brief flow reversals)

to a variable maximum. In practice, there is a sort of

fluctuation between laminar and turbulent flow, oc-

curring when the velocity is around respectively zero

and the maximum. This justifies the reduction of

parameter a and the increase of b and d.
• For heat power over 1600 W, the system is still cha-

otic but with a ‘‘two-sides’’ attractor (see the right

column of Fig. 5). This means that in the average

the system spends less time in the region around the

zero flow velocity. This has lead to parameters b
and d equal to the first range of heat powers (corre-

sponding to a dominance of turbulent motion) but

parameter a equal to that of the second range of heat

powers (which accounts for the influence of the low

velocity region around flow reversal).

Various experimental tests have been performed in

order to validate the mathematical model. Preliminary

analyses of the experimental data have shown that the

onset of unstable dynamics occurs for heat power

ranging around 1000 and 1100 W. Over this heat power

the flow is always unstable whereas below this value it is

stable, unless rapid perturbation increases the heat

power supply more than about 150 W.

For the sake of model validation, here are reported

just the experimental conditions characterised by heat

power values of 800, 1500 and 2200 W, as they well

represent the possible dynamics of the system.

Due to the chaotic behaviour of the system in study,

the comparisons between experimental and simulated

data have been performed only on the basis of a quali-

tative approach, analogously to what has been proposed

elsewhere [9]. In fact, a direct comparison of time series

coming from systems (or models) that are not identical is

impossible due to the strong dependence on initial

conditions typical of chaotic motion [25,26]. This

problem cannot be solved, as in a real system measure-

ment uncertainties and noise are always present.

Therefore, the comparison has been limited to verify the

existence of morphological similarities between experi-

mental and simulated time series and between their at-

tractors in phase space. The comparison in the time

domain implies that the experimental and simulated

time series can be considered in good accordance if their

waveforms, as well as their mean values, their frequen-

cies and their oscillation ranges, are approximately

similar. In phase space it has been considered sufficient

to verify the existence of morphological similarities

between the experimental and simulated attractors.

Fig. 3 reports the comparisons of the experimental

(left column) and simulated (right column) time series

DT25 ¼ T2� T5 for a heat power supplied to the heat

exchanger of 800 W. Apart from the relevant amount of

noise in the experimental data, which is anyway peculiar

of the stationary conditions, the ability of the model to

reproduce the system dynamics for low heat power

supply is clear, both for the overall transient behaviour

and for the stationary value reached after it. Paren-

thetically, the flow inversion that occurs in the simula-

tion is simply due to the casual choice of the initial

conditions.

For higher heat power values the system dynamics

does not converge to a stationary solution and may be

characterised by different kinds of oscillations. Fig. 4

reports the comparisons for experimental and simulated

time series DT25 ¼ T2� T5; the left and right columns

report the plots for a heat power supplied to the heat

exchanger respectively of 1500 and 2100 W. These plots

give a clear indication of the capability of the model of

reproducing the dynamical behaviour of the experi-

mental rectangular natural circulation loop. In fact,

there is sufficient evidence that the waveforms cha-

racterising the experimental time series are analogous to

those describing the simulated time series.

Also, the amplitude and frequencies characterising

the system and the model are in the overall comparable.

The analysis of the plots also shows the capability of the

model in reproducing with satisfying accuracy the two

main dynamical case of the system in study. The model

simulates satisfactorily the operating conditions with

negligible flow reversals, as it happens for relatively low

heat power (e.g. 1500 W), whit oscillations mainly

maintaining the same sign. This behaviour has been

Fig. 3. Comparison of the experimental and simulated time series of temperature difference DT25 ¼ T2� T5 for P ¼ 800 W.

A. Fichera, A. Pagano / International Journal of Heat and Mass Transfer 46 (2003) 2425–2444 2431



experimentally found to happen in both directions, the

sign of oscillations primarily depending on the initial

conditions. The model is also capable of simulating

operating conditions with well-developed flow reversals,

for which the temperature difference frequently change

sign, as it happens for the heat power 2100 W. The

comparisons concerning the velocity follow the same

patterns of those on temperature difference and, there-

fore, have not been reported.

Fig. 5 reports the comparison in phase space for the

same cases described in Fig. 4. The left and right columns

report the attractors for heat power 1500 and 2100 W

respectively. Reminding that it is possible to draw just

qualitative consideration on the similarity existing be-

tween the experimental (first row) and simulated (second

row) attractors, the comparison, once again, confirms the

satisfactory performance of the model in the description

of the system dynamics. In fact, it is evident how striking

the simulated attractors resemble those describing the

experimental dynamics. Moreover, the satisfactory per-

formances of the model indirectly prove also the validity

of the assumption made on the heating boundary con-

ditions, where a constant and uniform heat extraction

at the cooling section was considered in order to allow

the model reduction.

3.3. Preliminary analysis of the model

The design of the controller moved from the mathe-

matical model described in the previous sections. The

first step towards the design of a controller consists in

calculating the stationary points of the model and in

analysing their stability. In practice the control action

will aim to ensure the stability of the stationary solutions

during operations for which they are unstable in the

uncontrolled flow. These points are obtained from

model (25)–(31) annulling the time derivatives of the

state variables and solving the resulting set of algebraic

equations. Three stationary points are found in this way.

Two points are symmetric, as a consequence of the

geometrical symmetry of the loop, and correspond to

the stationary motion that may occur with equal prob-

ability either in the clockwise or in the counter-clockwise

direction; they will be referred in the following as SP1

and SP2. The third point, SP3 in the following, corre-

sponds to the absence of motion; in practice this case is

possible only when no geometrical or thermal pertur-

bations alter the ideal symmetry of the system, and is

characterised by the transfer of heat from the source to

the sink only through the conduction mechanism, i.e.

without convection. Due to the weakness of conductive

heat transfer, SP3 is usually highly unstable. In practice

it is stable only for very low values of the heat power.

In order to analyse the stability of the system, the

model has been linearised around the equilibrium

points, determining the jacobian matrix and studying

its eigenvalues, and observability and controllability of

the linearised model have been characterised.

Referring to the symmetric equilibrium points SP1

and SP2, which are those of interest for practical appli-

Fig. 4. Comparison of the experimental and simulated time series of temperature difference DT25 ¼ T2� T5 for heat power: P ¼ 1500

W (first column), P ¼ 2100 W (second column).
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cations, it has been found that the linearised model

around this equilibria is completely observable but

not controllable. In particular, the subset describing

the second mode (Eqs. (28) and (29)) does not depend

directly on variations of the heat power, on which the

control action can be exerted. Nonetheless, this non-

controllable subsystem is stable and therefore the

global linearised system is stabilisable. This has been

confirmed also by a wide set of simulations of the non-

linear system, for which convergence to zero of the

second mode has been always observed. In practice, for

the purpose of control, it has been verified that the un-

controllability of the second mode does not pose a

problem.

It is interesting to underline that the stability of the

second non-controllable mode is guaranteed by the ab-

sence of forcing therefore as well as by the thermal

damping associated to the thermal diffusivity a. This is

an important point that confirms the choice made at the

beginning of this study, in accordance with the sugges-

tion reported in [21], of taking into account also the

thermal diffusivity. In fact, higher order models for

natural circulation loops, at least for the case of rect-

angular geometry, cannot neglect the terms depending

on thermal diffusion, on the contrary of what is com-

monly done for toroidal thermosyphons, reducing their

dynamics to the first mode [10,18–20].

The analysis of the poles of the linearised systems for

solutions SP1 and SP2 has been performed gradually

increasing the heat power. These points are stable for

low heat power values (up to 1100 W) and unstable for

greater values, which agrees with the onset of unstable

dynamics found during the experiments.

Fig. 6 shows the maximum real part of the eigen-

values of the linearised model with respect to the heat

Fig. 5. Comparison of experimental and simulated attractors of DT25 ¼ T2� T5, for heat power: P ¼ 1500 W (left column), P ¼ 2100

W (right column).

Fig. 6. Maximum real part of the eigenvalues of the linearised

model.
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power. Notice that the particular (non-parabolic) shape

of this plot is simply due to the variations of the pa-

rameters of the model, as reported in Tables 2 and 3.

4. Controller design

The main purpose of the control action is to avoid

temperature and velocity oscillations in the loop, which

compromise efficient heat removal from the heat source.

From now on, the study has been focused on the design

of controllers aiming to stabilise solutions SP1 and SP2,

in particular to the first of them, which is associated to

the clockwise motion of the fluid and hence, with the

convention adopted, to the positive stationary velocity.

The problem of stabilising SP3 has been neglected as it is

out of the scope of the present paper.

The equilibrium conditions have been derived from

the model for a set of given nominal values of the heat

power and all the controllers have been designed to

provide deviations around this power.

Several controllers have been designed on the base of

the linearised model and then tested both on a simulator

of the non-linear ODE model and on the real system.

The differences between the controllers regard the choice

of the feedback variable and of the control law.

In particular, temperature difference DT25 ¼ T2� T5
(i.e. the inlet–outlet temperature difference at the heating

section, indicated in the previous section as DThs) or the
fluid velocity have been adopted as feedback variables.

The first choice that has been considered in this study

has been the design of a feedback controller with pro-

portional action, aiming to shift the real part of the poles

of the system from positive to negative values. The gen-

eral well-known scheme for the generic output of the

system (or of the model), Y , is reported in Fig. 7(a), ev-

idencing that the nominal input Unom is modified by a

term proportional, through the gain Kp, to the difference

existing between the actual and the reference system

output.

Considering as reference output the stationary values

of the feedback variable for the given input, the only

unknown in the scheme is the gain Kp that ensures the

stability of the controlled system with the desired ra-

pidity of convergence to the desired stationary solution.

The next step in the direction of the design of the

controller is represented by the optimisation of the

performance of the controller. In particular, the simple

proportional strategy, though it may be able to suppress

the unstable dynamics and to drive the system to the

desired stationary solution, may nonetheless suffer of

relevant oscillations of both the feedback and the con-

trol variable and of excessively long transient. As well

known, both these problems can be solved by adding a

derivative action to the proportional term. This new

term increases the global control action proportionally

to the derivative of the difference between the actual and

the reference value of the feedback variable, as reported

in Fig. 7(b). In this way it is possible to anticipate the

action of the controller, smoothing it and reducing both

the amplitude of the oscillations of the controlled system

and the transient.

In all the experiments and the simulations the control

action has been turned on after that the system had

manifested a sufficiently developed oscillating behaviour,

in order to show the capability of the controllers both in

maintaining the system stability and in stabilising its

dynamics starting from unstable conditions.

4.1. Proportional and proportional-derivative control on

velocity

From a mathematical point of view, the flow velocity,

x, is the only real variable directly simulated by the

model and its value can be measured in any point of the

loop, as a direct consequence of the assumption of un-

compressible fluid. Therefore, the simplest controller is

obtained considering the proportional strategy for the

suppression of the oscillations of the velocity around its

stationary value.

This assumption leads to modify the mathematical

model describing the free dynamics of the system, by

addition of the control term Kpvðxref � xÞ to those terms

that contain the input C, which must be modified

accordingly as

C ¼ Cnom þ Kpxðxref � xÞ þ Kdx _xx ð34Þ

Fig. 7. Proportional (a) and proportional-derivative (b) feedback control scheme for the generic system output Y .
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In this way the equations of the model for the controlled

system become:

_xxðtÞ ¼ � 1
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In order to determine the gain of the proportional

controller, Kpx, it is necessary to analyse the stability of

the controlled model (35) by varying Kpx, or, which is

the same, to analyse the eigenvalues of the jacobian

matrix of the controlled system.

These eigenvalues, i.e. the poles of the linearised

controlled system, depends on Kpx so that it can be de-

termined by imposing that all the eigenvalues have

negative real parts. This must be done considering the

constraint that if the gain of the controller is too high it

may happen the undesired condition of a forced con-

vergence on the banal solution (i.e. point SP3), which

corresponds to the flow stop.

In order to ensure a satisfactory margin of stability to

the controlled system it has been found to be sufficient to

require to the real parts of the poles to be minor than

)0.00025.
The capabilities of the simple proportional action on

the velocity have been tested in simulation for a wide

range of initial conditions, demonstrating for all cases

the ability of the controller in capturing the system

dynamics in the basin of attraction of the stationary

solution of the controlled system.

In the following plots, and unless differently stated, a

horizontal dashed line will be used to indicate either the

stationary value or the nominal value, depending on

whether the plot reports one of the system variables or

the control input. Analogously, a vertical dashed line

will be used to indicate the instant at which the con-

troller is activated.

Fig. 8 reports the results of the simulation performed

for the operating condition with heat power in input

P ¼ 1800 W, calculated proportional gain Kpx ¼ �20:38
and without derivative action (Kdx ¼ 0). The left plot

reports the evolution of the feedback variable, which

exactly converges on the desired calculated stationary

value, xref ¼ 0:0537 m/s. The central plot reports the

behaviour of the inlet–outlet temperature difference at

the heating section whereas the right plot reports the

control variable, the heat power P , whose oscillations

with respect to the nominal value naturally vanishes, as

well as Kpðxrif � xÞ, once that system has been stabi-

lised.

It is only mentioned here that, in consideration of the

chaotic nature of the system, it has been also tested the

behaviour of the system turning the controller off after

that the stationary solution has been reached. Simula-

tions of the model have shown that unstable chaotic

oscillations occur again after a transient; their onset

occurs after about 500 s from the time at which the

controller is turned off.

Fig. 8. Simulation of the proportional controller on the velocity for Pnom ¼ 1800 W, xref ¼ 0:0537 m/s, Kpx ¼ �20:38: feedback

variable x (left plot), temperature difference DT25 (central plot), control input P (right plot).
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For the sake of comparability with the experimental

data and of real application of the controller, a further

modification to the emulator has been considered. In

fact, the heat power, commanded from the control

board, cannot vary unrestrained but must be bounded

between a maximum, depending on the application, and

a minimum, which can be hardly chosen below zero, as

this would mean to operate the heating section as a

cooling section. Various simulation have been per-

formed with the emulator limiting the heat power within

the range from 0 to 6000 W, with the upper limit cor-

responding to the maximum heat power that the ex-

perimental system is able to supply. Simulations

performed in this way have revealed that the controller

is always able to damp the oscillations and to drive the

system to the desired target, though, as expected, this

occurs in a wider transitory.

Considering the addition of the derivative term,

simulations have allowed to observe, as expected theo-

retically, that it damps and shortens the transitory

response of the controlled system.

The gain Kdx has been determined maintaining the

Kpx previously calculated and proceeding by trials, try-

ing to optimise the emulator response.

It has been found that the PD controller is effective

for negative values of Kdx, ranging between Kdx ¼ �5

and Kdx ¼ �100. Moreover, the higher is the absolute

value of the derivative gain, the stronger the oscillations

are damped; for absolute value of Kdx greater than 50,

no further effective improvement of the performance

occurs, whereas for Kdx greater than 100 the simulated

velocity settles down on the solution SP3.

Fig. 9 reports the time series of the feedback variable,

x, that has been obtained simulating the dynamics of the

controlled system for a nominal heat power P ¼ 1800

W, considering the same reference velocity xref and

proportional gain Kpx previously considered. The left

and right plots refer to the simulation performed for

derivative gain Kdx ¼ �10 and Kdx ¼ �50 respectively.

It can be noticed that the derivative term is beneficial as

it allows a sensible reduction of the time required to the

controller to drive the system to the stable solution: for

example, for Kdx ¼ �10 this time is about half of that

required by the simple proportional controller. On the

other hand, the reduction of the amplitude of the os-

cillations is not very relevant, though it occurs. The

greater value for this gain allows to further reduce the

controller time response and damp the oscillations, in

particular avoiding flow reversal. Resuming, the con-

troller has been demonstrated to be able to drive

the system to the desired stationary value.

4.2. Proportional and proportional-derivative control on

DT25

Known applications of experimental control of nat-

ural circulation loops with toroidal geometry have

considered the temperature difference between two sec-

tions of the loop as the feedback variable (see among the

other [9,10,18,19]). A common choice is the temperature

difference on the horizontal diameter, which in that

configuration corresponds both to the inlet–outlet tem-

perature difference at the heat exchanging sections and

to one of the variable describing the mathematical

model. This consideration has lead to choose also for the

rectangular loop the inlet–outlet temperature difference

at the heater, which has been called DT25 in accordance

to the first part of this study. This temperature difference

has been calculated considering the abscissas x2 ¼ 0:15
m and x5 ¼ ð2Lþ L1 � 0:15Þ m, which correspond to the

measuring points of temperature T2 and T5 respectively,

and applying Eq. (33) for the conversion from the model

variable to the local temperature at the generic abscissa.

From a practical point of view this choice is prefer-

able with respect to the velocity, as measuring the tem-

perature is indeed easier, less expensive and more

reliable than the flow rate.

The stationary temperature difference to be set as

reference for the controller can be evaluated referring in

Eq. (33) to the stationary values a101, b101, a201, b201, a301,

b301 (where the generic subscript i01 refers to the coef-

ficient of the ith mode for the stationary point SP1).

Once that DT25ref has been defined the simple pro-

portional-derivative control strategy produces the input:

C ¼ Cnom þ KpDT ðDT25ref � DT25Þ þ KdDTD _TT25 ð36Þ

Fig. 9. Simulation of the PD controller on the velocity for Pnom ¼ 1800 W, xrif ¼ 0:0537 m/s, Kpx ¼ �20:38 and Kdx ¼ �10 (left plot),

Kdx ¼ �50 (right plot).
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and the ODE model for the controlled system becomes
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From this point on, the strategy that has been fol-

lowed is identical to that for the velocity. In particular,

the proportional gain has been determined imposing the

stability of the linearised system, finding the KpDT en-

suring that the real parts of the linearised system is minor

than a specified value (set equal to )0.001). Values of

KpDT for which this happens have been proved to exist in

all the range of nominal operating conditions considered.

For the case of the heat power Pnom ¼ 1800 W, for

which DT25ref ¼ 15 �C, it has been found KpDT ¼ 50.

This value has been tested in simulation, showing that

the system dynamics in this case is not stabilised on the

desired stationary solution but that the controller drive

the system to the no-flow condition, i.e. point SP3.

Various other values of KpDT have been therefore tested

on the emulator. This has lead to find that proportional

gain KpDT ¼ �0:07 is able to stabilise the simulated dy-

namics on the desired stationary solution DT25ref . Cor-
respondingly, also the simulated velocity has been

proved to reach its stationary value at Pnom ¼ 1800 W.

Fig. 10 shows the simulated results of the simple

proportional strategy (KdDT ¼ 0) for the mentioned val-

ues of Pnom and DT25rif and for KpDT ¼ �0:07. The

controller has been turned on in presence of well-

developed unstable oscillations. Also in this case it has

been chosen to describe directly the simulations ob-

tained taking into account the possibility to vary the

heat power P only once out of 5 s. Moreover, the heat

power P has been bounded in the range between 0 and

6000 W.

The only difference with respect to what has been

previously described for the controller on the velocity is

the introduction of a white noise acting on the velocity

(obtained with a new block in the emulator), with a

maximum amplitude of the 2% of the stationary value of

this variable. The choice of the velocity has been made

because this is the only real variable appearing in the

ODE model and this is the most feasible way to repre-

sent the influence of noise on the whole system.

The analysis of the plots evidences that simulations

of the controller converge on the desired target; the

amplitude of the oscillations are in the overall compa-

rable with those obtained with the controller on the

velocity, pointing out that both temperature difference

DT25 and velocity x can be theoretically chosen.

Notice that reported simulations demonstrate that

the choice of KpDT ¼ �0:07, though derived by means of

the emulator and not from the linearised model, al-

lows the control on DT25 to perform as satisfactorily as

the control on velocity. This result has been confirmed in

the experiments, as reported in the next section.

Fig. 11 reports the results of the simulations per-

formed for a derivative gain KdDT ¼ �2, and for the

Fig. 10. Simulation of the proportional control on temperature difference DT25 for Pnom ¼ 1800 W, DT25ref ¼ 15 �C, KpDT ¼ �0:07:

feedback variable DT25 (left plot), velocity x (central plot), control input P (right plot).
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other conditions considered for the simple proportional

strategy. The only difference between the two tests is the

time at which the controller has been activated. This

choice has been made because the activation of the PD

controller after 1000 s (and for the same initial condi-

tions) has shown a very fast convergence on the sta-

tionary solutions. This happens because the starting of

the controller at initial state very close to solution SP3

causes the capturing of the system dynamics, damping to

zero the heat power supply; this brief initial transient

produces the drastic damping of the oscillations, which

is then followed by a sort of unrealistic overdamped

convergence to the desired stationary behaviour.

The analysis of the plots evidences that the derivative

action seems to determine, at least in simulation, a

drastic improvement of the convergence of the system.

The transient of the controlled system is, in fact, shorter

and, above all, the oscillations of the system variables

are much lower.

Reported results have been all referred, for brevity,

to a nominal heat power Pnom ¼ 1800 W. Nonetheless, a

wide set of heat power values, covering the entire range

of interest, have been examined and the corresponding

control parameters have been calculated. The procedure

that has been adopted perfectly corresponds to that

described so far; also, the results of the simulations are

consistent with those previously reported.

Table 4 summarises the gain of the controllers that

have ensured the desired performance for the various

controllers. In all reported cases the gains of the pro-

portional control either on velocity x or on temperature

difference DT25 have not been altered during the design

of the proportional-derivative controller.

5. Experimental control

This section is devoted to draw a schematic picture of

the results that have been obtained applying the control

strategies previously discussed to the experimental ap-

paratus described in the second section. For each con-

troller reported in the previous section, various

experimental tests have been performed in order to ad-

just the reference values and the controller gains to be

used during the experiments, starting from those deter-

mined on the base of the mathematical model and of its

simulations. A general criterion adopted has been to

search for a good settling time without a large over-

shoot, in order to achieve suitable performances of the

controller. For brevity, among those experimented, only

the results corresponding to the most satisfactory per-

formances of the various controllers have been reported.

Preliminary tests have been performed for various

nominal heat power, Pnom, activating the simple pro-

portional controller, either on the velocity or on tem-

perature difference DT25, with the reference value and

gains defined on an analytical base from the quiet con-

dition. This has allowed to experimentally determine

case by case the real stationary values of the model

variables on which the dynamics of the real controlled

system converge; hence, the controller gains have been

adjusted in order to account for the mismatch between

Fig. 11. Simulation of the PD controller on temperature difference DT25 for Pnom ¼ 1800 W, DT25ref ¼ 15 �C, KpDT ¼ �0:07, KdDT ¼ 2:

(a) DT25, (b) P , (c) x.

Table 4

Summary of the calculations of the P and PD controllers on x and on DT25 for various nominal heat power Pnom

P [W] xref [m/s] Kpx Kdx DT25ref [�C] KpDT KdDT

1000 0.0407 )15.06 )15 11.17 )0.0500 )0.5
1200 0.0444 )16.57 )15 12.28 )0.0554 )0.5
1400 0.0477 )17.96 )15 13.32 )0.0595 )0.7
1600 0.0512 )18.98 )10 14.19 )0.0650 )0.7
2000 0.0560 )21.72 )20 16.22 )0.0800 )0.8
2200 0.0582 )23.00 )15 17.18 )0.1000 )1.0
2400 0.0602 )24.24 )15 18.10 )0.1000 )1.0
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the model and the experimental system. Notice that, for

each test the desired stationary behaviour has been

satisfactorily reached. This has been verified also for

cases in which the controller have been turned on from a

well-developed unstable dynamics; the only drawback

that has been revealed in these tests is that the error on

the reference stationary value causes a slight growth of

the controller settling times.

The overall good performances of the analytical

control demonstrate the validity of the model and the

robustness of the proposed control strategies to uncer-

tainty on the model parameters. This is indeed an im-

portant result in consideration of the chaotic nature

of the free dynamics of the system.

For the sake of comparability with the results of the

simulations reported in the previous section, the experi-

mental test with nominal heat power Pnom ¼ 1800 W will

be reported. For this test the velocity reference value has

been corrected, as previously described, passing from the

theoretical value xref ¼ 0:0537 m/s to the experimental

value xref ¼ 0:0628 m/s. Correspondingly, the stationary

value of DT25 has been decreased from the theoretical

DT25ref ¼ 15 �C to the experimental DT25ref ¼ 11 �C.
The proportional gain of the controller has been settled

at Kpx ¼ �20, which very slightly differs from the theo-

retical Kpx ¼ �20:38.

The left column of Fig. 12 reports the experimental

time series of the controlled system under the previous

choices and with feedback on the velocity. The upper

plot reports only the experimental time series of the

feedback variable with the control on, so that the com-

parison with the third plot, reporting the control input

P , can be easily done. The second plot reports both the

controlled and the uncontrolled temperature difference

DT25, in order to allow to esteem the ability of the

controller in suppressing unstable chaotic dynamics.

The analysis of the reported time series evidences that

the experimental controller performs satisfactorily,

driving the system dynamics to the desired stationary

solutions in a reasonably short time. Nonetheless, it can

be observed that the activation of the controller has not

corresponded to the complete disappearance of flow

reversals (at least one has still occurred). Moreover, even

when the desired steady state has been reached, the

control input continues to oscillate, which means that

the cost of control is in this case higher. The reason of

this behaviour is the relevant amount of noise that af-

fects the measure of the velocity, which is a main

drawback in the choice of this one as the feedback

variable. Notice that the results herein reported (with a

cut-off filter at 0.1 Hz on the velocity) are the best ob-

tainable: this is an intrinsic constraint of the magnetic

Fig. 12. Experimental proportional control on the velocity (left column) and on the temperature difference for Pnom ¼ 1800 W:

feedback variable (first row), independent variable with and without control (second row), control input P (third row).
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flow meter adopted for the measure of the velocity,

which is affected (in the whole range of frequencies of

interest) by the presence of impurity and small water

vapour bubbles transported by the flow. Nonetheless,

this is the only sensor which can be used in the present

application, as other kind of flow meter, non-magnetic,

interact in some way with the flow dynamics (usually

with a concentrated loss). Fortunately, it has been ver-

ified that when the system reaches the desired stationary

behaviour it is possible to eliminate the controller in-

definitely. In fact, unless a sudden perturbation of the

heat power of relevant amplitude (of about 350 W) is

applied, the experimental system dynamics remains

stationary. The last consideration represents an experi-

mental evidence of the existence of a basin of attraction

of the stationary solution with non-null measure that

can be considered the result of various damping inertial

term, acting on the flow dynamics in a way that is not

contemplated by the model. In practice, once that the

system dynamics has been stabilised and a well-deve-

loped turbulent flow is established, the new damping

terms acting on the process are not those considered in

the model during the calculation (as reported in Table 3

for heat power greater than 900 W) but are greater. This

means that they are able to damp external perturbation

more strongly then those considered for the free

dynamics.

Considering as feedback variable the temperature

difference DT25, the approach followed to determine the

optimal parameters of the controller is the same de-

scribed for the velocity. In particular, though it had been

considered obvious, it has been nonetheless verified the

correspondence of the experimental stationary condi-

tions on which the controlled system naturally con-

verges, i.e. when the tests are started directly with the

control on, with those determined with the control on

the velocity.

For example, considering, as in previous cases,

the test with Pnom ¼ 1800 W, the reference value for

the feedback variable has been found again to be

DT25ref ¼ 11 �C, corresponding to xref ¼ 0:63 m/s

and leading to a ‘‘corrected’’ proportional gain KpDT ¼
�0:12. The mismatch of 4 �C between the stationary

predicted and experimental value is due to the heat

lost from the various parts of the experimental loop

(which is not modelled at all). These losses have the

global effect to decrease the thermal level of the system,

leading to lower stationary states. This effect could be

modelled, but this is out of the aims of this study, by

subtracting a constant term (representing the mean

value of the heat losses over the whole loop) to the

function hðxÞ used in this study to describe the boundary

heating conditions.

The right column of Fig. 12 reports the experimental
time series of the controlled system with DT25 as feed-
back variable. The first row reports only the feedback

variable DT25, the second plot reports the velocity x
both under the controlled and the free condition, in
order to allow to judge qualitatively the capability of the
controller and the third plot reports the heat power P ,
i.e. the control input.

Though also in this case the controller is not able to

avoid from the very beginning the flow reversal, its

performances are not only satisfactory on the overall,

but are sensibly better than those obtained with the

feedback on the velocity. In fact, oscillation amplitude

as well as the controller settling time are sensibly re-

duced and, even more important in practice, the control

input oscillations around its equilibrium nominal value

are drastically lower, which implies a reduction of the

cost of control. This was an expected result, as the

measurement of the temperature by means of thermo-

couples is more reliable and less sensitive to noise than

the measurement of the velocity by means of the

magnetic flow meter equipping the experimental appa-

ratus.

In order to give a synthetic presentation of the per-

formances of the proportional controller in the whole

range of nominal heat power of interest, Figs. 13 and 14

report the results of the proportional strategy on x and

on DT25 respectively, for nominal heat power

Pnom ¼ 1400 W (left column) and Pnom ¼ 2200 W (right

column). It must be reminded that, as it has been de-

scribed in the section devoted to the validation of the

model, the free dynamics manifested by the system for

these two values of Pnom is considerably different. In

particular, for Pnom ¼ 2200 W the system behaviour only

slightly differs from that at Pnom ¼ 1800 W (i.e. just in

term of stationary values and of maximum excursions of

the system variables), whereas the behaviour at

Pnom ¼ 1400 W is relevantly different, as the system os-

cillates only around one of the two symmetric stationary

points SP1 and SP2. In terms of phase space represen-

tation, this corresponds to an attractor with one single

lobe, which is morphologically quite different from the

attractor with two lobes obtainable for higher values of

Pnom.
The results reported in both figures show that the

proportional control strategy on both variables is effec-

tive in stabilising the two kind of system dynamics that

the system may manifest; this means that it can be use-

fully applied over the entire operating range of the ex-

perimental system. Note also that for all the reported

values of the nominal heat power, the use as feedback

variable of the temperature difference instead of the

velocity allows higher performances. Finally, it has been

also observed that the use of a proportional control does

not sensibly amplify disturbances, which are anyway

very low. The only drawback manifested for the control

on temperature difference DT25 at Pnom ¼ 2200 W con-

sists in the mismatch existing between the value of the

heat power at steady state and the desired nominal
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value. Further experimental tests, with opportune ad-

justments of the proportional gain of the controller,

would allow to eliminate this mismatch but is beyond

the scope of this paper.

Table 5 reassumes a schematic of the reference sta-

tionary values and of the corresponding gains experi-

mentally determined at various nominal heat power

values for the proportional controller with feedback

respectively on the velocity and on temperature differ-

ence DT25.
Finally, the experimental tests for the PD control

strategy have been concentrated only on the PD control

on temperature difference DT25, due to the better per-

formances ensured by the simple proportional control on

this variable with respect to that on velocity. Fig. 15

summarises the experimental results obtained for the

heat power Pnom ¼ 1800 W, for the same proportional

gain KpDT used for the simple proportional control (which

is also reported in the figure) and for three different

values of the derivative gain KdDT : )0.25, )0.5 and )0.75.
For the sake of comparability, though the system is

chaotic it has been chosen to activate the controller after

630 s for all the tests. Notwithstanding the differences

characterising the initial part of the various tests, this has

allowed to activate the controller for a similar initial state

of the system.

The analysis of the plots evidences that the addition

of the derivative action has the desired effect: the oscil-

lations are in fact increasingly damped for growing

values of the KdDT . Nonetheless, it can be noticed that

for KdDT ¼ �0:75 the system converges more slowly to

the stationary solution; moreover, this value of the de-

rivative gain causes the worsening of the control input

once that the regime has been reached, as a consequence

of the amplified effect of noise on the derivative of the

feedback variable. In practice, the derivative gain

KdDT ¼ �0:5 ensures in the overall the best performances

as it presents the fastest convergence, low amplitudes of

Fig. 13. Experimental proportional control on the velocity for Pnom ¼ 1400 W (left column) and Pnom ¼ 2200 W (right column): (a)

feedback variable x, (b) temperature difference DT25, (c) control input P .
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the oscillations and, at regime, sufficiently low influence

of noise on the control input.

In practice, though the derivative action has allowed

to slightly decrease the settling time, it has not intro-

duced significant improvements. Similar results have

been obtained for the whole set of nominal equilibrium

points considered.

6. Conclusions

In this study a finite order model and a controller for

rectangular natural circulation loops have been theo-

retically defined and experimentally validated. The

model has been obtained by reducing an infinite set of

equations, derived by the Fourier series expansion of the

momentum and energy equations, to a truncated finite

set of seven equations approximating the system dy-

namics to the first three modes. Comparisons of exper-

imental and simulated time series in the time domain

and in phase space have confirmed the reliability of the

Fig. 14. Experimental proportional control on DT25 for Pnom ¼ 1400 W (left column) and Pnom ¼ 2200 W (right column): (a) feedback

variable DT25, (b) velocity x, (c) control input P .

Table 5

Summary of the calculations of the P and PD controllers on x
and on DT25 for various nominal heat power Pnom

Pnom [W] xref [m/s] Kpx DT25ref [�C] KpDT

1000 0.0477 )16 8.30 )0.06
1200 0.0538 )17 9.08 )0.08
1400 0.0578 )18 9.69 )0.09
1600 0.0601 )19 10.04 )0.11
1800 0.0628 )20 11.00 )0.12
2000 0.0680 )23 11.50 )0.14
2200 0.0723 )25 12.00 )0.15
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model, which correctly reproduces the complex dy-

namics displayed by real systems.

Two distinct feedback variables have been considered

for the design of the model-based controller: the flow

velocity and the inlet–outlet temperature difference at

the heating section. The first variable has never been

used in similar experimental implementation whereas the

temperature difference has represented the common

choice. Theoretical and experimental applications of the

proportional control, on both variables, have allowed to

stabilise the system dynamics, though a slight mismatch

between the experimental and simulated results still ex-

ists. Nonetheless, reported results represent a step ahead

with respect to previous studies, for which the passage

from theory to experiments has required not only strong

modification of the parameters of the controller but even

the use of a different control law.
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